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Please read this disclaimer[1] first.

RECOMMENDATIONS AND HAMILTONIANS

To understand physics of Quantum Monte Carlo (QMC) I would recommend to read in the first turn paper of
R. Blankenbecler, D.J. Scalapino and R.L. Sugar (BSS) “Monte Carlo calculation of coupled boson-fermion systems. I”,
Phys. Rev. D, 24 (1981) 2278 . The next step would be to understand difference between Monte Carlo scheme
of BSS and the scheme based on Hirsch-Fye algorithm developed for treatment of the Anderson impurity model. A
very good description one can find in Review of A. Georges, G. Kotliar, W. Krauth and M.J. Rozenberg (GKKR),
“Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions”, Rev. Mod.
Phys. 68 (1996) 13. Generalization of the scheme described in the Review for degenerate (multiorbital) case one
can find in paper of K. Takegahara, “Quantum Monte Carlo of the Degenerate Anderson Model with Cubic Crystal
Field”, J. Phys. Soc. Jpn. 62 (1993) 1736. A little modification of formulas presented in this paper for the case
of Bethe lattice is given below along with program explanation.

N -band degenerate Hubbard model reads
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where Uα,α′ = 〈α, α′|V (r − r′)|α, α′〉, Jα,α′ = 〈α, α′|V (r − r′)|α′, α〉 , V (r − r′) is Coulomb repulsion, α is the orbital
index. When the model above is considered in the limit of infinite dimensions d → ∞ the lattice model is exactly
mapped onto the degenerate impurity model which effective action S:

With self-consistency condition : The self-consistency condition is reduced to: The Anderson impurity Hamiltonian
reads as

HAM = H0 + HI (2)
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∑

p≥2,m

εp,mc†p,mcp,m +
∑
p,m

Vp,m(c†p,mfp,m + h.c.) +
∑
m

(Em +
(2lmax − 1)

2
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where conduction bath orbitals have index p = 2, ..., N and impurity corresponds p = 1. Em is the f level energy.
m = {l, σ} includes both orbital, l = −j, ..., j and spin σ indices,
nm = f†mfm

µ̃ = µ− (2lmax−1)
2 U .

For two bands, l = 1, 2

m = 1 =⇒ l = 1, σ =↑
m = 2 =⇒ l = 1, σ =↓
m = 3 =⇒ l = 2, σ =↑
m = 4 =⇒ l = 2, σ =↓

To solve impurity model we use the Hirsch-Fye Quantum Monte Carlo algorithm. As an input we give G0(τ) into
QMC and we get G(τ) as an output from QMC. Fourier transformation gives us G(iωn) from G(τ). Then G(iωn) is
used in the self-consistency condition to obtain G0(τ). Below we describe the Hirsch-Fye QMC Algorithm.
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HIRSCH-FYE QMC ALGORITHM: THEORY.

To calculate any physical functions we need to know the partition function in the first turn. To do so, let us
discretize time interval (imaginary time) [0, β] into L slices of length ∆τ so that ∆τl = l∆τ, l = 1, 2, ..., L, β = L∆τ .

Then the partition function reads

Z = Tr exp{−βH} = Tr
∏

exp{−∆τ(H0 + HI)} (5)

To treat it we need some approximation.

The Trotter approximation

We can approximate the partition function using the Trotter formula as

Z ≈ Z∆τ = Tr
∏

exp{−∆τH0} exp{−∆τHI} (6)

The discretized GF is written as
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for l1 > l2 .

The Hubbard - Stratonovich transformation

In the following we use the Hubbard - Stratonovich transformation to decouple the quadratic interaction HI :

exp{−∆τUmm′{nmnm′ − 1
2
(nm + nm′)}} = (9)

1
2

∑
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exp{λmm′Smm′(nm − nm′)}

where cosh λmm′ = exp(∆τUmm′
2 ), Smm′(τl) are auxiliary Ising fields at each time slice.

λmm′ = ArcCosh(exp(
∆τUmm′

2
)) (10)

In the non-degenerate Anderson impurity model we have only one auxiliary Ising field S(τl) = ±1 at each time slice,
whereas in the degenerate case the number of auxiliary fields is equal to the number of m,m′ pairs, i.e. mC2.

Using the Hubbard - Stratonovich transformation we can rewrite the partition function as

Z = Tr{Smm′ (τl)}
∏
m

detOm[{Smm′(τl)}], (11)

where NL×NL matrix Om reads as

(Om)l,l = I, (12)

(Om)l,l−1 = − exp(−∆τH0) exp(V m
l−1)(1− 2δl,1). (13)
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V m
l =

∑

m′(6=m)

λmm′Smm′(τl)σm′ , (14)

where
σmm′ = +1 for m < m′

σmm′ = −1 for m > m′.

V m
l has N ×N size and diagonal.

The Greens function

Let us define configuration dependent Greens functions as, Gm ≡ G∆τ
m [{Smm′}]. One can express Gm through Om

matrix as :

Gm = O−1
m (15)

The relation between two GFs for two different configurations {V m} and {V m′} looks as

G
′
m = Gm + (Gm − I)[exp{(V m)′ − V m} − I]G

′
m (16)

i.e.

G
′
m = A−1Gm, (17)

where

A = 1 + (1−G)[exp(V ′ − V )− 1], (18)

The ratio,R, of the Boltzmann factor for different configurations is given by

R =
∏
m

Rm, (19)

Rm =
det(O

′
m)

det(Om)
= det[I − (Gm − I)[exp{(V m)′ − V m} − I]]. (20)

If we make a local change in the field Smm′ → S
′
mm′ = −Smm′ for m < m′ at time slice l, then the matrix

[exp{(V m)′−V m}− I] has only one non-zero diagonal element, at the f -location of the l− th submatrix. In this case
the determinant is obtained easily.

R = RmRm′ , (21)

Rm = 1− {gm(l, l)− 1}{exp(−2λmm′Smm′)− 1}, (22)

Rm′ = 1− {gm′(l, l)− 1}{exp(+2λmm′Smm′)− 1}, (23)

where gm is L× L matrix of the f -Greens function. If R/(1+R) (the heat bath condition) is greater that a random
number between 0 and 1, then the flip is accepted, otherwise it is rejected. If the flip is accepted then all time
components of the f -GF for the new configuration are obtained from the old one through the relation:

g
′
m(l1, l2) = gm(l1, l2) + {gm(l1, l)− δl1,l}(e−2λmm′Smm′ − 1)

1
Rm

gm(l, l2), (24)

g
′
m′(l1, l2) = gm′(l1, l2) + {gm′(l1, l)− δl1,l}(e−2λmm′Smm′ − 1)

1
Rm′

gm′(l, l2), (25)

which follows from the Dyson equation (16)
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The physical Greens function

Gphysical
m (τl, τl′) =

1
Z

Tr{Smm′}gm(τl, τl′) det Om[{Smm′}]. (26)

[1] This summary was written a while ago (long before the current Review has been published) and we provide it for completeness
as the multi-orbital Hilbert-transform DMFT(QMC) code description section contains some references to this write-up. This
code is designed to be simple, and it should be possible for someone new to the field to understand this code. A more advanced
QMC code (i.e. LISA) with more features is also provided with the review. We view the multi-orbital Hilbert-transform
DMFT(QMC) code as a bridge between single-band QMC (see Rev. Mod. Phys. 68, 13 (1996)) and LISA.


