
Hubbard I approximation 

To be specific, we concentrate on the Anderson impurity Hamiltonian  
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describing the interaction of the impurity level fε  with bands of conduction electrons E αk  via 

hybridization ( )Vα k . U  is the Coulomb repulsion between different orbitals in the f –band.  

Now we turn to the Hubbard I approximation [1] which is closely related to the moments 

expansion method [2]. Consider many–body atomic states ( )n
κΦ  which in ( )SU N  are all 

degenerate with index κ  numerating these states for a given number of electrons n.  The 
impurity Green function is defined as the average 

 ( ) ( ) (0)fG T f fτ α βτ τ += − .  (2) 

and becomes diagonal with all equal elements in ( )SU N . It is convenient to introduce the 
Hubbard operators  
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and represent the one–electron creation and destruction operators as follows 
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The impurity Green function (2) is given by  
 ( ) ( )f nm

nm

G Gτ τ= ,∑  (6) 

 
where the matrix ( )nmG τ  is defined as  
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Establishing the equations for ( )nmG τ  can be performed using the method of equations of motion 

for the X  operators. Performing their decoupling due to Hubbard [1,3], carrying out the Fourier 
transformation and analytical continuation to the real frequency axis, and summing over n  and 
m  after (6) we arrive to the main result  
 1 1( ) ( ) ( )f atG Gω ω ω− −= − ∆ ,  (8) 

where hybridization ( ) ( ) ( )V Eω ω∆ = / −∑ kk
k  satisfies the DMFT self–consistency condition 

of the Hubbard model on a Bethe lattice  
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with W  being the bandwidth.  
The ( )atG ω  can be viewed in the matrix form (6) with the following definition of a diagonal 

atomic Green function 
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with ( 1) 2n fE n Un nε= + − /  being the total energies of the atom with n  electrons in ( )SU N .  
The coefficients nX  are the probabilities to find atom with n  electrons while combinatorial 

factor ( 1)1
( 1)

NN
n n N nC − !−

! − − !=  arrives due to equivalence of all states with n  electrons in ( )SU N .  

The coefficients nX  are normalized to unity, 
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expressed via diagonal elements of ( )nmG iω  as follows:  
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Their determination in principle assumes solving a non–linear set of equations while determining 

( )fG ω .  The mean number of electrons can be measured as follows: 
0
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= .∑  The numbers nX  can be also used to find the averages nn  

nnn : density–density correlation function nn  for local states with n  electrons is 

proportional to the number of pairs formed by n  particles 2 2
n NC C/ . Since the probability for n  

electrons to be occupied is given by: N
n n nP X C= , the physical density–density correlator can be 

deduced from: 2 2
n N

nn
nn C C P= /∑ . Similarly, the triple occupancy can be calculated from 

3 3
n N

nn
nnn C C P= /∑ .  

If we neglect by the hybridization ( )ω∆  in Eq. (8), the probabilities nX  become simply 

statistical weights:  
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We thus see that in principle there are several different ways to determine the coefficients nX , 

either via self–consistent determination (11), or using statistical formula (12). To determine the 
best procedure let us first consider limits of large and small U ’s. When ( ) 0ω∆ ≡ , ( )fG ω  is 

reduced to ( )at
nmnm

G ω ,∑  i.e. the Hubbard I method reproduces the atomic limit. Setting 0U ≡  

gives 1( ) [ ( )]f fG ω ω µ ε ω −= + − − ∆ , which is the correct band limit. Unfortunately, at half–

filling this limit has a pathology connected to the instability towards Mott transition at any 
interaction strength U .  
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Running program 

• compile program typing "make" at the source files location. Makefile was tested 
on Linux OS using PGI compiler. Please adjust it depending on operating system and 
compiler used.  
• Edit “input" file which has the following structure:  

 
1  IMOD   
0.0  EF   
2.0  U   
0.016  TEMP   
4  NDEG  
500  NMSB  



500  OMAX   
500  NOMG  
50  WEND   
F  COMPUTE_REAL  

 
where IMOD = 1 is the Hubbard Model, IMOD=3 the Anderson impurity model, EF is the 
impurity level, U is value of Coulomb repulsion, TEMP is temperature to be used used to create 
for Matsubara points grid, NDEG is the degeneracy, NMSB is the number of Matsubara point, 
OMAX is the imaginary frequency cutoff, NOMG is the number is real frequency points, 
WEND is the real frequency cutoff, COMPUTE_REAL is flag once is “True" tell program to 
produce the self-consistent solution (last iteration) on real axis.  

1. Program’s input consists from one more file (provided the Anderson impurity 
model item is chosen in “input" file):  

“delta.dat" containing the hybridization function.  
The structure is the following:  
 

Column #  Value   

1  Frequency   
2  Re Delta   
3  Im Delta   

 
1. Run the program executable (“main" is the default name).  
2. Program’s output consists from the following files:  

1) “gfsig_iw.dat" containing Green’s function (GF) and the self-energy (SE) on Matsubara axis  
2) “gfsig_re.dat" containing Green’s function (GF) and the self-energy (SE) on real axis 
provided flag "COMPUTE_REAL" is “TRUE".  
They have the same structure:  
 

Column #  Value   

1  Frequency   
2  Re GF   
3  Im GF   
4  Re SE   
5  Im SE   

 
3) “grid_re.dat" containing real frequency grid for the hybridization function (delta).  
4) “grid_im.dat" containing Matsubara frequency grid for the hybridization function (delta).  
Both files have the same structure:  
 

Column #  Value   

1  Frequency   
 

Program content 

 
Makefile  main make file   

dmf_cmpdiag.f  The solution of the generalized eigenvalue 
problem   



imp_sunatm.f  Solves Anderson impurity model, returns GF 
and SE.   

lib_broy6.f  Broyden mixing.   

lib_cinv.f  Finds inverse of square matrix.   

lib_csplines.f  Splines complex function from one to 
another grid.   

lib_deriv1.f  Calculates radial derivative.   

lib_morefun.f  Calculations of a few auxiliary functions   

lib_pade.f  Realization of Páde procedure.   

lib_splin3.f  Computed a natural spline approximation of 
third order.   

mod_common.f  File containing common modules used 
across the program.   

mod_dimart.f  File containing common modules used 
across the program.   

mod_init.f  File containing common modules used 
across the program.   

sunhub1.f  Main program.   
 
 


